

Analysis of Pu isotopes and Np-237 in seawater by AMS

I. Lévy¹, E. Chamizo Calvo², M. López Lora^{2,3}, M. Bressac⁴

1) International Atomic Energy Agency, Marine Environment Laboratories, MC 98000 Monaco.

- 2) Centro Nacional de Aceleradores. Thomas Alva Edison 7, 41092, Seville, Spain.
- 3) Dpto. de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
- 4) Laboratoire d'Océanographie de Villefranche Station Zoologique 181 Chemin du Lazaret 06230 Villefranche sur Mer France.

Key elements of RML work

- Production and distribution of Reference Materials for radionuclides Preparation for accreditation: ISO Guide 17034 and ISO 17025
- Organisation of proficiency tests and inter-laboratory comparisons Plan for accreditation: ISO 17043
- Provision of quality assurance services to MSs and to international programs
- Providing experimental and scientific expertise and analytical capacities during aftermath of nuclear accidents
- Technical cooperation
- ALMERA network
- Laboratory and field work
- Research, training and communication

IAEA Atoms For Peace **Environment** Laboratories

Centro Nacional de Aceleradores (CNA)

IAEA Collaborating Centre

for Accelerator-Based Analytical Techniques for the Study of Radionuclides in Marine Samples

2016-2020

²³⁷Np

- T_{1/2}=2.144×10⁶ years.
- alpha emitter.
- ⁻ produced by double neutron capture of ²³⁵U in nuclear reactors.

 ^{235}U $(n, \gamma) \rightarrow ^{236}U$ $(n, \gamma) \rightarrow ^{237}U$ $(\beta) \rightarrow ^{237}Np$

- by fast neutron irradiation of ²³⁸U in nuclear bomb testing and reactors.

²³⁸U (n, 2n) ²³⁷Pu (β) ²³⁷Np

- by alpha decay of its parent ²⁴¹Am and grandparent ²⁴¹Pu.
- oceanographic tracer due to its conservative nature in seawater.

Allow the analysis of all anthropogenic elements in one sample.

- •No other Np isotope than ²³⁷Np available.
- •Use of ²³⁹Np after radiochemical separation:

From the « classical » method, Analyze Neptunium as the same time as Plutonium and Americium.

Different tests have been done. Used isotope: ²³⁹Np.

Coprecipitation tests

Different precipitates have been done with ²³⁹Np tracer to test efficiency to coprecipitate Neptunium.

precipitates	Recovery ²³⁹ Np (%)
MnO ₂	98
Fe(OH) ₂	100
NdF ₃	79
Fe(OH) ₃	100
CaC ₂ O ₄	5
Fe(OH) ₃ after MnO ₂	12
MnO ₂ after MnO ₂	90
Fe(OH) ₂ after MnO ₂	100

Adsorption tests of Np on anionic resin Dowex 1x4.

	²³⁹ Np + ²⁴² Pu		Fraction	Activity(Bq)	Recovery(%)
Р	Reduc u [∗]	tion	HNO ₃ 8M	7±3	2±1
N	p*		HCI 10M	45±3	13±1
	Oxyda	tion	Pu Fraction	77±6	22±2
Pu Np	$(III) \longrightarrow Pu(I) \\ (IV) \longrightarrow Np(I) \\ (IV) (IV) \\ (IV) \\$	V) V)	Np Fraction	147±12	42±3
Adso (rption of Pu et on Dowex 1X4	: Np	²³⁹ Np activity i	n the differer Dowex 1X4	nt fractions of

Pu elution

Np elution

Purification tests of Neptunium: removal of Plutonium traces.

Use of TEVA® resin : liquid extractant adsorbed on a polymeric support.

Plutonium contribution in Neptunium fraction is of background level.

Alpha Spectrum of Neptunium in IAEA-381.

[²³⁷Np]: 8,9 mBq/l certified value
[²³⁹⁺²⁴⁰Pu]:13,5 mBq/l certified value
[²³⁸Pu]: 3,2 mBq/l certified value

Alpha Spectrum of Plutonium in IAEA-381.

Cathodes preparation for AMS measurement

Atoms for Peace and Development

Np Fraction:

- 1mg Fe3+, 2pg U-233
- Fe(OH)₃ Precipitation
- ashing at 650°C
- Mix with 3mg Nb
- Pressed in 1 aluminum cathode

Pu Fraction:

- 1mg Fe³⁺,
- Fe(OH)₃ Precipitation
- ashing at 650°C
- Mix with 3mg Nb
- Pressed in 1 aluminum cathode

Accelerator Mass Spectrometry (AMS)

Atoms for Peace and Development

Application of the new method to DYFAMED samples

DYFAMED: Dynamique des Flux Atmosphériques en Méditerranée

Results

Reference material

IAEA 381	²³⁹⁺²⁴⁰ Pu	²³⁸ Pu	Rec(%)	²³⁷ Np	Rdt(%)
	mBq.I ⁻¹	mBq.I ⁻¹		mBq.I ⁻¹	
J-18	$16,1\pm0,9$	$3,59\pm0,26$	65	$7,2\pm0,7$	56
J-19	$14,8\pm0,4$	$3,43\pm0,15$	83	$7,7\pm0,6$	104
J-20	$14,6\pm0,4$	$3,29\pm0,15$	76	$8,7\pm1,0$	88
J-21	$15,2\pm0,4$	$3,37\pm0,15$	83	8,8 ± 1,1	94
J-22	$14,7\pm0,7$	$3,68\pm0,41$	95	$8,3\pm1,9$	75
J-23	$14,3\pm0,7$	$3,89\pm0,45$	82	$7,9\pm1,8$	75

[²³⁷Np]: 8,9 mBq/l certified value [²³⁹⁺²⁴⁰Pu]:13,5 mBq/l certified value [²³⁸Pu]: 3,2 mBq/l certified value

Np Fraction

Pu Fraction

	²³⁷ Np (at)	Unc.
Blk-ng-1-Np	1.58E+08	1.70%
Blk-ng-2-Np	1.15E+08	6.00%
Blk-ng-3-Np	1.38E+08	3.00%
Blk-ng-4-Np	6.28E+07	2.50%
Blk-ng-5-Np	1.10E+08	1.90%
Blk-ng-6-Np	1.88E+08	2.10%

11	²³⁹ Pu (at)	Uncer.
Blk-ng-1-Pu	8.11E+07	2.50%
Blk-ng-2-Pu	7.55E+07	2.50%
Blk-ng-3-Pu	7.66E+07	2.10%
Blk-ng-4-Pu	7.41E+07	1.90%
Blk-ng-5-Pu	7.82E+07	1.80%
Blk-ng-6-Np	7.08E+07	2.80%

Traces of ²³⁹Pu and ²³⁷Np in the blanks:

- ²³⁹Pu daughter of ²³⁹Np
- ²³⁷Np daughter of ²⁴¹Am coming from ²⁴³Am solution.

Optimization of the method for AMS

 Volumes: Alpha spectro

Alpha spectrometry/ICP-MS Measurements

→ ~100 L

AMS measurements

→ ~10 L

- Simplification of the method: Some steps can be avoided for AMS measurements because purification of the different fractions is not so critical than with other techniques.
- ²⁴²Pu tracer for Pu isotopes and ²³⁷Np determination.
- include ²³⁶U determination in the process.

236U

- $T_{1/2} = 2.34 \times 10^7$ years.
- alpha emitter.
- produced by neutron capture of ²³⁵U in nuclear reactors.

- by alpha decay of $i = 0^{(n, \gamma)}$
- oceanographic tracer due to its conservative nature in seawater.

Two methods were tested: Method-1 and Method-2

Determination of the radiochemical yield

Element	Neptunium Uranium		Plutonium	
Tracers	²³⁹ Np	²³² U	²⁴² Pu	
Technique	Gamma spectrometry	Alpha spectrometry	Alpha spectrometry	

• Test 1 performed using method previously presented.

- Main uranium losses due to double coprecipitation step
- Main Np-Pu losses due to oxidation state adjustment

Test 2: influence of pH on coprecipitation.

Sample	рН	Coprecipitation yield (%)						
(10 L seawater)			U	Np (1st ppt)	Np (2nd ppt)	Np (final)		
А	8 - 8.5		77 ± 11	69.2 ± 2.1	16.2 ± 0.6	85.5 ±2.2		
В	8 - 8.5		25.2 ± 3.8	68.9 ± 2.7	11.0 ± 0.7	79.9 ±2.8		
С	8 - 8.5		72 ± 11	67.0 ± 2.0	12.5 ± 0.6	79.5 ±2.1		
		Avg.	58	68.4	13.2	81.6		
		SD	29	1.2	2.7	3.3		
				A		(A)		
D	9 - 9.5		82.5 ± 8.7			96.2 ± 2.2		
E	9 - 9.5		112 ± 12			88.2 ±2.1		
F	9 - 9.5		96 ± 10	Y AL		93.9 ± 4.0		
		Avg.	96.8			92.8		
		SD	15			4.1		

2 tests based on CNA's method for U-Pu.

Test a: Fe(OH)₂ dissolved in10mL of 1M HNO₃. Addition of 0.5 mL Hydrazine (drop test*). Addition of 10mL of conc. HNO₃. (final concentration ~ 8M HNO₃).

Test b: Fe(OH)₂ dissolved in15mL of 1M HNO₃ (drop test*). Addition of 200mg of Mohr's salt. Addition of 2.5mL of conc. HNO₃. (final concentration ~ 3M HNO₃).

* Droptest:

- Fe(III) in presence of NH₄SCN 5M shows a red blood color whereas Fe(II) is colorless

- Fe(II) in presence of 2,2' bipyridine shows a bright pink color and Fe(III) light yellow

<u>Test a</u>: Too much concentrated HNO_3 added: some Np was oxidised to Np(V) <u>Test b</u>:Not enough concentrated HNO_3 added: some Pu was kept as Pu(III).

DYFAMED results

Analysis of 2.5 liters of DYFAMED samples collected in 2001 using the AMS method.

Reference material

1) IAEA-443: Irish sea water.

		Radiochemical		00781	
Sample		yield (%)		²³⁷ Np	(mBq kg ⁻ ')
				Measured	
		Np	Pu	value	Expected value
IAEA-443-a		67.7 ± 2.5	65 ± 10	9.6 ± 1.2	
IAEA-443-b		68.8 ± 2.6	74 ± 10	9.5 ± 1.1	
IAEA-443-c		71.3 ± 2.2	75 ± 11	9.1 ± 1.2	
	Avg.	69.3	71.4	9.39	8.7 ± 0.5
	SD	1.8	5.8	0.22	

Reference material

2) IAEA-418: Mediterranean sea

Sample		Concentration (10 ⁶ at kg ⁻¹)				²³⁶ U/ ²³⁸ U (10 ⁻⁹)	²⁴⁰ Pu/ ²³⁹ Pu	²³⁷ Np/ ²³⁶ U
		²³⁶ U	²³⁷ Np	²³⁹ Pu	²⁴⁰ Pu			
IAEA-418-1		25.9 ± 2.5	16.0 ± 3.2	10.33 ± 0.86	2.05 ± 0.22	3.24 ± 0.31	0.200 ± 0.027	0.62 ± 0.14
IAEA-418-2		27.4 ± 2.0	-	10.6 ± 1.2	1.71 ± 0.21	3.46 ± 0.24	0.162 ± 0.026	-
IAEA-418-3		27.3 ± 3.0	21.0 ± 3.3	10.7 ± 1.0	1.70 ± 0.18	3.43 ± 0.37	0.160 ± 0.022	0.77 ± 0.15
	Avg.	26.86	18.5	10.54	1.82	3.38	0.174	0.69
	SD	0.85	3.6	0.19	0.2	0.12	0.022	0.11

Total concentrations in blank samples								
	²³⁹ Pu (10 ⁵ atoms)							
BIk-IAEA-1	16.3 ± 2.8	3.95 ± 0.79	0.81 ± 0.23					
BIk-IAEA-2	7.9 ± 2.3	1.60 ± 0.56	0.40 ± 0.20					
BIk-IAEA-3	13.5 ± 3.5	3.7 ± 1.1	ND					
BIK-IAEA-4	17.1 ± 4.0	1.70 ± 0.78	ND					
BIK-IAEA-5	7.0 ± 1.9	4.1 ± 1.1	ND					
BIk-IAEA-6	7.4 ± 1.7	0.34 ± 0.38	ND					

- Decrease of ²³⁷Np contamination by a factor of 1000.
- Decrease of ²³⁹Pu contamination by a factor of 100.
- Contamination of ²³⁶U too high → analysis of reagents:K₂S₂O₅, FeSO₄ and Mohr's salt.

Check of reagents for ²³⁶U contamination

Sample	Reagents	FeSO ₄ (g)	$K_2S_2O_5$ (g)	Mohr's Salt (g)	²³⁶ U(at)	un.	²³⁶ U
			¥				(at/g FeSO ₄)
FeSO4-CNA-1-U	CNA	0.8584	0	0	1.13E+06	3.70%	1.32E+06
FeSO4-CNA-2-U	CNA	0.8685	0	0	1.06E+06	3.50%	1.22E+06
FeSO4-IAEA-1-U	IAEA	1.3011	0	0	1.57E+04	9.30%	1.21E+04
FeSO4-IAEA-2-U	IAEA	1.2856	0	0	7.59E+03	10.60%	5.91E+03
K2S2O5-CNA-1-U	CNA	0.8488	2.561	0	9.87E+05	3.70%	1.16E+06
K2S2O5-CNA-2-U	CNA	0.8862	2.5082	0	1.06E+06	3.40%	1.20E+06
K2S2O5-IAEA-1-U	IAEA	1.2854	2.6178	0	6.70E+04	8.20%	5.21E+04
K2S2O5-IAEA-2-U	IAEA	1.3439	2.539	0	1.01E+05	7.40%	7.50E+04
Mohr-CNA-1-U	CNA	0	0	0.2254	-		-
Mohr-CNA-2-U	CNA	0	0	0.2232	1	-	-
Mohr-IAEA-1-U	IAEA	0	0	0.2132	1.93E+04	12.40%	A
Mohr-IAEA-2-U	IAEA	0	0	0.2088	-		4
BIk-NB-a-U	CNA	0.85	2.5	0.2	1.04E+06	4.30%	1.22E+06
BIk-NB-b-U	CNA	0.85	2.5	0.2	1.00E+06	3.60%	1.18E+06
BIk-ST-U	CNA	-		-	1.21E+05	8.40%	-

Thank you for your attention!

